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Total Synthesis of /-Triptonide and /-Triptolide 

Sir: 

As members of a novel structural class, the diterpene triepoxides, 
triptolide (1) and congeners possess potent cytotoxic—in particular, 
antileukemic—properties,1 but unfortunately remain hardly ac­
cessible natural products. Herein we describe the total synthesis 

1 X=H, x'=OH 3 

2 x,x'=o 

of /-triptonide (2) and /-triptolide2 by a route utilizing the readily 
available resin acid /-dehydroabietic acid (3)3 as the practical 
starting material.4 

In preparation for construction of the lactone moiety, the 
trifluoroacetate 4 of the known,5'6 dehydroabietic acid derived, 
phenol 5 was degraded to ketone 6 by a precedented sequence.2*'7 

4 R = COCF31 X=CH3I X'-COjH 
5 R=H, X=CH3J X1^CO2H 
6 R=H, X,X'«0 
7 R=COCF3, X=CH3, X' = NC0 
8 R=H, X=CH3, X'= N(CH3I2 

9 R=H, X,X'=CH2 

IO 
I l 

12 

R=H, R'=CH20H, X,X'«0 
R=H, R'« CH2OH, X = OH, 

X^CH2OCH2C6H5 

R=Ac, R = CHO, X = OH, 
X^CH2OCH2C6H5 

Curtius degradation of 4 [(i) SOCl2, benzene-DMF, 50 0C; (ii) 
NaN3, H20-acetone, 3 0C; (iii) toluene, 100 0C] provided iso-
cyanate 7 (90%), which was converted without purification (50%) 
to tertiary amine 8 by LiAlH4 in refluxing THF followed by 
refluxing HC02H-aqueous HCHO. After oxidation to the N-
oxide of 8 (w-CPBA, CHCl3, -20 0C), 30-min reflux in CHCl3 
effected Cope elimination, giving olefin 9 (80%) as an oil, [a]2i

D 
+214° (c 0.06, hexane). Oxidative cleavage (OsO4-NaIO4, 
AcOH-dioxane-H20, 20 0C) afforded ketone 6 (30%) ;8 mp 
143-145 0C, [a]20

D +185° (c 0.05, CHCl3). 
In order to elaborate the butenolide function, intermediate 6 

first was transformed (50%; 73% based on starting material 
consumed) to 0-hydroxy ketone 109 [mp 157-159 0C, [a]25

D 
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+ 121° (c 0.025, CHCl3)] by generation of the enolate with (i-
Pr)2NLi followed by its reaction with gaseous HCHO, all in THF 
at -78 0C. After the alcohol was blocked as the 2-methoxypropyl 
ether [MeOC(CH3)=CH2-AcOH, 20 0C], a second, protected 
methylol unit was appended,10 giving triol monobenzyl ether ll11 

by successive treatment with (a) 2 equiv of PhCH2OCH2Li (THF, 
45 min at -78 0C, then 30 min at -20 0C) and (b) pH 1 hy­
drochloric acid-THF at 20 0C (70% overall). After formation 
of the phenolic monoacetate of 11, through successive exposure 
to MeOC(CH3)=CH2-AcOH, Ac20-pyridine, and pH l hy­
drochloric acid-MeOH (all at 20 0C), Cr03-pyridine-HCl oxi­
dation (CH2Cl2, 20 0C) yielded (90% overall) aldehyde 12 as an 
unstable oil. Dehydration to the a,/3-unsaturated aldehyde 1312 

OAc 

OHC 

14 R=Ac, X,X'=H 
15 R = Ac, X1X^O 
16 R=H, X=OH, X' = H 

was managed (20%) by treatment with o-C6H4(NH2)2-PhC02H 
(EtOH, 20 0C),13 followed by hydrolysis (pH 1 hydrochloric 
acid-EtOH, 20 0C) of the presumed intermediary o-phenylene-
diamine imine of 13. Oxidation of 13 to the carboxylic acid level 
(NaClO2-HOSO2NH2, dioxane-H20, 20 0C)14 followed by hy-
drogenolysis of the benzyloxy group (H2-Pd-C, EtOH, 20 0C) 
was concluded by spontaneous lactonization, affording in quan­
titative yield butenolide 14.15 

As a means of access to the triepoxy ketone assemblage in 2, 
lactone 14 was initially oxidized16 (20%) to the oily ketone 15 
(CrO3, AcOH-H2O, 40 0C), then saponified (KOH, MeOH-
H2O, 20 0C) to the unisolated, free phenol, and finally reduced 
(NaBH4, EtOH, 20 0C) to the benzyl alcohol 16" (95% from 
15). The prototypic oxidation course described by Adler et al.18 

was applied, as previously,2b'19 in the conversion (NaIO4, 
MeOH-H2O, 20 0C) of phenol 16 to epoxy dienone 17. The 
latter, without purification, was treated with H2O2-KOH (MeOH, 
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-CHMe2), 2.34 (s, 3 H, -O2CCH3), 2.90 (sept, 1 H, / = 7 Hz, -CHMe2), 
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(20) Undergraduate student in the Honors Program in Chemistry. 

0002-7863/80/1502-5424501.00/0 © 1980 American Chemical Society 



J. Am. Chem. Soc. 

20 0C), giving bisoxide 18, along with the 12,13-0-epoxy isomer. 
The mixture was immediately further oxidized with 3,5-
(NOp2C6H3CO3H-Na2HPO4 (CH2Cl2, 20 0C), forming /-tri-
ptonide (15% from 17; mp 251-252 0C) purified by chroma­
tography (Porasil T, EtOAc-hexane). The synthetic material was 
identical in all respects (IR, NMR, UV, CD; mmp 250-252 0C) 
with a sample of authentic triptonide. In view of the reported1,2b 

reconstitution of the triptolide system by sodium borohydride 
reduction of 2, the above synthesis embraces the former natural 
product as well. 
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Total Synthesis of 
(5S,6l?,7£,9£,llZ,14Z)-5-Hydroxy-6-[(2/?)-2-
amino- 2- (carboxy ethyl) thio]-7,9,11,14-eicosatetraenoic 
Acid, a Potent SRS-A 

Sir: 
The slow-reacting substance of anaphylaxis (SRS-A) is a highly 

spasmogenic material and possibly plays an important role in 
asthma and other diseases of the respiratory system.1 A structure 
for the SRS-A had been proposed by Samuelsson et al.2 as 1 and 

was thought to arise by the addition of cysteine to the epoxide 
2, which is derived from arachidonic acid. Other publications3,4 

suggested that there may be a family of compounds exhibiting 
SRS-A properties, one member of this group being the product 
resulting from ring opening of the epoxide 2 by glutathione. Until 

(1) Orange, R. P.; Austen, K. F. Adv. Immunol. 1969, 10, 105. 
(2) Borgeat, P.; Hammarstrom, S.; Samuelsson, B., presented at the 1979 

International Conference on Prostaglandins, Washington, D.C., May 1979. 
See: Chem. Eng. News 1979, 57 (24), 19. 

(3) Parker, C. W.; Huber, M. M.; Hoffman, M. K.; Falkenhein, S. F. 
Prostaglandins 1979, 18, 673. 

(4) Hammerstrom, S.; Murphy, R. C; Samuelsson, B.; Clark, D. A.; 
Mioskowski, C; Corey, E. J. Biochem. Biophys. Res. Commun. 1979, 91, 
1266. 
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quite recently, there was still some doubt as to the stereochemical 
nature of the double bonds in the SRS-A, and while some authors2 

preferred structure 2 for the epoxide, others5 favored 3. This 

3, R=H 
4,R=CH 3 

problem has been resolved by the elegant synthesis of the gluta­
thione adduct of 3, by Corey and his group,6 which was shown 
to be the same material as the SRS-A derived from a mouse mast 
cell tumor line (UV spectrum and high-performance liquid 
chromatography). 

In this communication, we report the synthesis of (55,6i?)-5, 
a potent spasmogenic agent, via the racemic f/-an.j-epoxide 4. As 

in the case of the recently reported syntheses,5,18b our approach 
also employed a polyene sulfonium salt for the construction of 
the desired epoxide. The key sulfonium salt 12 was prepared as 
follows. The copper-catalyzed coupling of l-bromo-2-octyne7 with 
the ethyl vinyl ether adduct of (E)-I-hydroxy-2-penten-4-yne8 gave 
7 (EtMgBr, CuCl, THF, 60 0C, 1 h), and subsequently the alcohol 

7 , X =CH2OCH(CH3)OC2H5 

8 , X = CH2OH 

9 , X = CHO 

1 0 , X = CH(OH)CH = CH2 

8 after acid hydrolysis9 (acetone, 0.2 N H2SO4, room temperature, 
3 h, 84% overall yield). Oxidation of this material with pyridinium 
dichromate10 (CH2Cl2, room temperature, 3 h) gave the aldehyde 
9 which was converted to the vinyl carbinol 10 with vinyl-
magnesium chloride (THF, -40 0C, 30 min, 58% from 8). Ex­
posure of 10 to phosphorus tribromide (ether, -30 —• 0 0C, 1 h, 
70%) gave the all-trans-bromide 11, which on treatment with 

I l ,Y = CH2Br 

12,Y = CH2-S^J Br 

tetrahydrothiophene yielded the salt 12 [MeOH-H2O (9:1), room 
temperature, 1 h, 100%]. This material was used directly without 

(5) Corey, E. J.; Yoshinobu, A.; Mioskowski, C. J. Am. Chem. Soc. 1979, 
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